Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116262, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569320

RESUMO

The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC50 values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R2=0.74(rsAHR1), R2=0.83(rsAHR2)) between docking energy and transcriptional activity (EC50) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R2=0.45) between the AC50 of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Dourada , Animais , Humanos , Dourada/genética , Dourada/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Dioxinas/metabolismo , Ligantes , Quercetina , Genisteína/toxicidade , Genisteína/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Isoformas de Proteínas/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612703

RESUMO

In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.


Assuntos
Antifibrinolíticos , MicroRNAs , RNA Longo não Codificante , Dourada , Animais , Aminoácidos , Dourada/genética , RNA Longo não Codificante/genética , 60515 , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , Mioblastos , RNA Mensageiro/genética , Sarcômeros
3.
Mar Drugs ; 22(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393057

RESUMO

Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, the objective of this work was to evaluate the immunomodulatory capability of three known synthetic AMPs derived from European sea bass, NK-lysin (Nkl), hepcidin (Hamp), and dicentracin (Dic), in head-kidney cell suspensions from European sea bass and gilthead seabream. The tested peptides were neither cytotoxic for European sea bass nor gilthead seabream cells and failed to modulate the respiratory burst and phagocytosis activities. However, they modified the pattern of transcription of immune-related genes differently in both species. Peptides were able to promote the expression of marker genes for anti-inflammatory (il10), antiviral (mx, irf3), cell-mediated cytotoxicity (nccrp1, gzmb), and antibody responses (ighm) in European sea bass, with the Nkl peptide being the most effective. Contrary to this, the effects of those peptides on gilthead seabream mainly resulted in the suppression of immune responses. To conclude, European sea bass-derived peptides can be postulated as potential tools for immunostimulation in European sea bass fish farms, but more efforts are required for their universal use in other species.


Assuntos
Bass , Doenças dos Peixes , Dourada , Animais , Peptídeos Antimicrobianos , Bass/genética , Dourada/genética , Imunidade , Perfilação da Expressão Gênica , Imunidade Inata
4.
Gene ; 909: 148322, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423140

RESUMO

Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-ß superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Músculos/metabolismo , Perciformes/genética , Perciformes/metabolismo
5.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353762

RESUMO

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Assuntos
Proteínas de Peixes , Hepcidinas , Inflamação , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Dourada/imunologia , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fígado/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Rim Cefálico/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos dos fármacos , Pele/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Regiões Promotoras Genéticas
6.
Mar Biotechnol (NY) ; 26(1): 60-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147145

RESUMO

Understanding the genetic composition and regional adaptation of marine species under environmental heterogeneity and fishing pressure is crucial for responsible management. In order to understand the genetic diversity and adaptability of yellowfin seabream (Acanthopagrus latus) along southern China coast, this study was conducted a seascape genome analysis on yellowfin seabream from the ecologically diverse coast, spanning over 1600 km. A total of 92 yellowfin seabream individuals from 15 sites were performed whole-genome resequencing, and 4,383,564 high-quality single nucleotide polymorphisms (SNPs) were called. By conducting a genotype-environment association analysis, 29,951 adaptive and 4,328,299 neutral SNPs were identified. The yellowfin seabream exhibited two distinct population structures, despite high gene flow between sites. The seascape genome analysis revealed that genetic structure was influenced by a variety of factors including salinity gradients, habitat distance, and ocean currents. The frequency of allelic variation at the candidate loci changed with the salinity gradient. Annotation of these loci revealed that most of the genes are associated with osmoregulation, such as kcnab2a, kcnk5a, and slc47a1. These genes are significantly enriched in pathways associated with ion transport including G protein-coupled receptor activity, transmembrane signaling receptor activity, and transporter activity. Overall, our findings provide insights into how seascape heterogeneity affects adaptive evolution, while providing important information for regional management in yellowfin seabream populations.


Assuntos
Perciformes , Dourada , Humanos , Animais , Dourada/genética , Dourada/metabolismo , Perciformes/genética , Osmorregulação , China
7.
Genes (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136962

RESUMO

Myostatin (mstn), also known as GDF8, is a growth and differentiation factor of the transforming growth factor-ß (TGF-ß) superfamily and plays a key inhibitory effect in the regulation of skeletal muscle development and growth in vertebrates. In the present study, to comprehend the role of the mstn2 gene of the yellowfin seabream Acanthopagrus latus (Almstn2b), the genomic sequence of Almstn2b is 2359 bp, which encodes 360 amino acids and is composed of three exons and two introns, was obtained. Two typical regions, a TGF-ß propeptide and TGF-ß domain, constitute Almstn2b. The topology indicated that Almstn2 was grouped together with other Perciformes, such as the gilthead seabream Sparus aurata. Moreover, Almstn2b was mainly expressed in the brain, fins, and spleen. Furthermore, five SNPs, one in the exons and four in the introns, were identified in the Almstn2b gene. The allele and genotype frequencies of SNP-Almstn2b +1885 A/G were significantly related to the total weight, interorbital distance, stem length, tail length, caudal length, caudal height, body length, and total length (p < 0.05). The allele and genotype frequencies of SNP-Almstn2b +1888 A/G were significantly related to the weight, interorbital distance, long head behind the eyes, body height, tail length, caudal length, and body length. Additionally, the relationship between the SNP-Almstn2b +1915 A/G locus and weight and long head behind the eyes was significant (p < 0.05). Furthermore, the other two SNPs were not significantly associated with any traits. Thus, the SNPs identified in this study could be utilized as candidate SNPs for breeding and marker-assisted selection in A. latus.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Sequência de Aminoácidos , Perciformes/genética , Perciformes/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fator de Crescimento Transformador beta/metabolismo
8.
BMC Genomics ; 24(1): 670, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936076

RESUMO

BACKGROUND: Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS: After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS: Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.


Assuntos
Dourada , Animais , Dourada/genética , Dourada/metabolismo , Transcriptoma , Epigenoma , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003219

RESUMO

The gilthead seabream, one of the most important species in Mediterranean aquaculture, with an increasing status of exploitation in terms of production volume and aquafarming technologies, has become an important research topic over the years. The accumulation of knowledge from several studies conducted during recent decades on their functional and biological characteristics has significantly improved their aquacultural aspects, namely their reproductive success, survival, and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing significant economic losses. Those deformities are induced during the embryonic and post-embryonic periods of life, and their development is still poorly understood. In the present review, we created a comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing to bone deformities and emphasized the potential of the gilthead seabream as a model organism for understanding bone morphogenesis in both aquaculture and translational biological research. This review article addresses the existing lack in the literature regarding gilthead seabream bone deformities, as there are currently no comprehensive reviews on this subject.


Assuntos
Dourada , Animais , Dourada/genética , Aquicultura/métodos , Morfogênese
10.
Fish Physiol Biochem ; 49(6): 1115-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855969

RESUMO

Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.


Assuntos
Perciformes , Dourada , Animais , Chaperona BiP do Retículo Endoplasmático , Dourada/genética , Betaína , DNA Complementar/genética , Perciformes/genética , Estresse do Retículo Endoplasmático , Fatores Ativadores da Transcrição/genética , Clonagem Molecular
11.
Cell Mol Life Sci ; 80(10): 310, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777592

RESUMO

Skeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.


Assuntos
Microalgas , Dourada , Animais , Humanos , Osteogênese , Peixe-Zebra , Suplementos Nutricionais , Dourada/genética , Dourada/metabolismo
12.
Int J Biol Macromol ; 247: 125635, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399879

RESUMO

Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.


Assuntos
Interferon Tipo I , Perciformes , Dourada , Animais , Fator Regulador 7 de Interferon/genética , Dourada/genética , Regulação da Expressão Gênica , Streptococcus iniae/genética , Proteínas de Peixes/química , Sequência de Bases , Sequência de Aminoácidos , Perciformes/genética , Interferon Tipo I/genética
13.
Genes (Basel) ; 14(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37107597

RESUMO

The gilthead seabream (Sparus aurata) is a species of relevance for the Mediterranean aquaculture industry. Despite the advancement of genetic tools for the species, breeding programs still do not often include genomics. In this study, we designed a genomic strategy to identify signatures of selection and genomic regions of high differentiation among populations of farmed fish stocks. A comparative DNA pooling sequencing approach was applied to identify signatures of selection in gilthead seabream from the same hatchery and from different nuclei that had not been subjected to genetic selection. Identified genomic regions were further investigated to detect SNPs with predicted high impact. The analyses underlined major genomic differences in the proportion of fixed alleles among the investigated nuclei. Some of these differences highlighted genomic regions, including genes involved in general metabolism and development already detected in QTL for growth, size, skeletal deformity, and adaptation to variation of oxygen levels in other teleosts. The obtained results pointed out the need to control the genetic effect of breeding programs in this species to avoid the reduction of genetic variability within populations and the increase in inbreeding level that, in turn, might lead to an increased frequency of alleles with deleterious effects.


Assuntos
Dourada , Animais , Dourada/genética , Aquicultura , Genômica , Sequenciamento Completo do Genoma
14.
Genet Sel Evol ; 55(1): 22, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013478

RESUMO

BACKGROUND: The gilthead sea bream (Sparus aurata) has long been considered resistant to viral nervous necrosis (VNN), until recently, when significant mortalities caused by a reassortant nervous necrosis virus (NNV) strain were reported. Selective breeding to enhance resistance against NNV might be a preventive action. In this study, 972 sea bream larvae were subjected to a NNV challenge test and the symptomatology was recorded. All the experimental fish and their parents were genotyped using a genome-wide single nucleotide polymorphism (SNP) array consisting of over 26,000 markers. RESULTS: Estimates of pedigree-based and genomic heritabilities of VNN symptomatology were consistent with each other (0.21, highest posterior density interval at 95% (HPD95%): 0.1-0.4; 0.19, HPD95%: 0.1-0.3, respectively). The genome-wide association study suggested one genomic region, i.e., in linkage group (LG) 23 that might be involved in sea bream VNN resistance, although it was far from the genome-wide significance threshold. The accuracies (r) of the predicted estimated breeding values (EBV) provided by three Bayesian genomic regression models (Bayes B, Bayes C, and Ridge Regression) were consistent and on average were equal to 0.90 when assessed in a set of cross-validation (CV) procedures. When genomic relationships between training and testing sets were minimized, accuracy decreased greatly (r = 0.53 for a validation based on genomic clustering, r = 0.12 for a validation based on a leave-one-family-out approach focused on the parents of the challenged fish). Classification of the phenotype using the genomic predictions of the phenotype or using the genomic predictions of the pedigree-based, all data included, EBV as classifiers was moderately accurate (area under the ROC curve 0.60 and 0.66, respectively). CONCLUSIONS: The estimate of the heritability for VNN symptomatology indicates that it is feasible to implement selective breeding programs for increased resistance to VNN of sea bream larvae/juveniles. Exploiting genomic information offers the opportunity of developing prediction tools for VNN resistance, and genomic models can be trained on EBV using all data or phenotypes, with minimal differences in classification performance of the trait phenotype. In a long-term view, the weakening of the genomic ties between animals in the training and test sets leads to decreased genomic prediction accuracies, thus periodical update of the reference population with new data is mandatory.


Assuntos
Dourada , Animais , Dourada/genética , Teorema de Bayes , Estudo de Associação Genômica Ampla , Larva/genética , Genótipo , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
Genes (Basel) ; 14(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36980892

RESUMO

Simple sequence repeats (SSRs), the markers with the highest polymorphism and co-dominance degrees, offer a crucial genetic research resource. Limited SSR markers in blackhead seabream have been reported. The availability of the blackhead seabream genome assembly provided the opportunity to carry out genome-wide identification for all microsatellite markers, and bioinformatic analyses open the way for developing a microsatellite genome-wide database in blackhead seabream. In this study, a total of 412,381 SSRs were identified in the 688.08 Mb genome by Krait software. Whole-genome sequences (10×) of 42 samples were aligned against the reference genome and genotyped using the HipSTR tools by comparing and counting repeat number variation across the SSR loci. A total of 156,086 SSRs with a 2-4 bp repeat were genotyped by HipSTR tools, which accounted for 55.78% of the 2-4 bp SSRs in the reference genome. High accuracy of genotyping was observed by comparing HipSTR tools and PCR amplification. A set of 109,131 loci with a number of alleles ≥ 3 and with a number of genotyped individuals ≥ 6 were reserved to constitute the polymorphic SSR database. Fifty-one polymorphic SSR loci were identified through PCR amplification. This strategy to develop polymorphic SSR markers not only obtained a large set of polymorphic SSRs but also eliminated the need for laborious experimental screening. SSR markers developed in this study may facilitate blackhead seabream research, which lays a certain foundation for further gene tagging and genetic linkage analysis, such as marker-assisted selection, genetic mapping, as well as comparative genomic analysis.


Assuntos
Dourada , Humanos , Animais , Dourada/genética , Genoma de Planta , Mapeamento Cromossômico , Polimorfismo Genético , Repetições de Microssatélites/genética
16.
PLoS One ; 18(2): e0281292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735738

RESUMO

Megalocytiviruses (MCVs) are double-stranded DNA viruses known to infect important freshwater and marine fish species in the aquaculture, food, and ornamental fish industries worldwide. Infectious spleen and kidney necrosis virus (ISKNV) is the type species within the genus Megalocytivirus that causes red seabream iridoviral disease (RSIVD) which is a reportable disease to the World Animal Health Organization (WOAH). To better control the transboundary spread of this virus and support WOAH reporting requirements, we developed and partially validated a TaqMan real-time qPCR assay (ISKNV104R) to detect all three genotypes of ISKNV, including the two genotypes that cause RSIVD. Parameters averaged across 48 experiments used a 10-fold dilution series of linearized plasmid DNA (107-101 copies), carrying a fragment of the three-spot gourami iridovirus (TSGIV) hypothetical protein revealed that the assay was linear over 7 orders of magnitude (107-101), a mean efficiency of 99.97 ± 2.92%, a mean correlation coefficient of 1.000 ± 0.001, and a limit of detection (analytical sensitivity) of ≤10 copies of TSGIV DNA. The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was evaluated and compared to other published assays using a panel of 397 samples from 21 source populations with different prevalence of ISKNV infection (0-100%). The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was 91.99% (87.28-95.6; 95% CI) and 89.8% (83.53-94.84). The latent class analysis showed that the ISKNV104R qPCR assay had similar diagnostic sensitivities and specificities with overlapping confidence limits compared to a second TaqMan qPCR assay and a SYBR green assay. This newly developed TaqMan assay represents a partially validated qPCR assay for the detection of the three genotypes of the species ISKNV. The ISKNV104R qPCR assay once fully validated, will serve as an improved diagnostic tool that can be used for ISKNV surveillance efforts and diagnosis in subclinical fish to prevent further spread of MCVs throughout the aquaculture and ornamental fish industries.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Perciformes , Dourada , Animais , Iridoviridae/genética , Doenças dos Peixes/epidemiologia , Perciformes/genética , Dourada/genética , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Genótipo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real
17.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834834

RESUMO

Red sea bream iridovirus (RSIV) is an important aquatic virus that causes high mortality in marine fish. RSIV infection mainly spreads through horizontal transmission via seawater, and its early detection could help prevent disease outbreaks. Although quantitative PCR (qPCR) is a sensitive and rapid method for detecting RSIV, it cannot differentiate between infectious and inactive viruses. Here, we aimed to develop a viability qPCR assay based on propidium monoazide (PMAxx), which is a photoactive dye that penetrates damaged viral particles and binds to viral DNA to prevent qPCR amplification, to distinguish between infectious and inactive viruses effectively. Our results demonstrated that PMAxx at 75 µM effectively inhibited the amplification of heat-inactivated RSIV in viability qPCR, allowing the discrimination of inactive and infectious RSIV. Furthermore, the PMAxx-based viability qPCR assay selectively detected the infectious RSIV in seawater more efficiently than the conventional qPCR and cell culture methods. The reported viability qPCR method will help prevent the overestimation of red sea bream iridoviral disease caused by RSIV. Furthermore, this non-invasive method will aid in establishing a disease prediction system and in epidemiological analysis using seawater.


Assuntos
Doenças dos Peixes , Iridovirus , Dourada , Animais , Iridovirus/genética , Dourada/genética , Propídio , Reação em Cadeia da Polimerase
18.
Front Endocrinol (Lausanne) ; 14: 1101356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755925

RESUMO

Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.


Assuntos
Fator de Crescimento Insulin-Like I , Dourada , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Dourada/genética , Dourada/metabolismo , Músculos/metabolismo , Proteólise
19.
J Fish Biol ; 102(4): 816-828, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36647813

RESUMO

The molecular characteristics and tissue disruption of 10 fatty acid-binding protein (fabp) genes in gilthead seabream (Sparus aurata) were investigated, and their expression levels were found in the fish fed diets with different vegetable oil (VO) sources, which may explore the potential function of fabp genes in S. aurata. For this purpose, the open reading frames of fabp genes involved in the transport and ß-oxidation of fatty acids (FA) were molecularly cloned and characterized. S. aurata was then exposed to a two-staged feeding trial (the grow-out period following a wash-out period) at low water temperatures. In the grow-out period, the fish were fed diets containing 50% and 100% ratios of various VOs for 60 days, and in the wash-out period, the fish were fed a diet containing 100% fish oil (FO) for 30 days. It has been determined that (a) S. aurata and vertebrate fabp/FABP genes are orthologues; (b) spatio-temporal differences in tissue-specific patterns of fabp genes differ importantly; for instance, the difference between the highest and lowest values reaches 13 × 105 -fold in the fabp10a; and (c) VO-based diets upregulated fabp transcript levels in the liver and muscle with some exceptions, such as liver fabp11a and muscle fabp7a. Gene expressions of only the hepatic fabp7b and fabp10a genes were diminished at the end of the wash-out period. In this study, the authors provide further evidence that dietary FAs affect fabp mRNA expressions in S. aurata. This might be useful in the nutritional control of fabp genes to maintain lipid homeostasis in marine fish fed VO-based diets at low water temperatures.


Assuntos
Dourada , Animais , Dourada/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Temperatura , Ácidos Graxos/metabolismo , Clonagem Molecular , Dieta/veterinária
20.
Mar Biotechnol (NY) ; 25(1): 150-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445545

RESUMO

Fish suffer from starvation due to environmental risks such as extreme weather in the wild and due to insufficient feedings in farms. Nutrient problems from short-term or long-term starvation conditions can result in stress-related health problems for fish. Yellowfin seabream (Acanthopagrus latus) is an important marine economic fish in China. Understanding the molecular responses to starvation stress is vital for propagation and culturing yellowfin seabream. In this study, the transcriptome and genome-wide DNA methylation levels in the livers of yellowfin seabream under 14-days starvation stress were analyzed. One hundred sixty differentially expressed genes (DEGs) by RNA-Seq analysis and 737 differentially methylated-related genes by whole genome bisulfite sequencing analysis were identified. GO and KEGG pathway enrichment analysis found that energy metabolism-related pathways such as glucose metabolism and lipid metabolism were in response to starvation. Using bisulfite sequencing PCR, we confirmed the presence of CpG methylation differences within the regulatory region of a DEG ppargc1a in response to 14-days starvation stress. This study revealed the molecular responses of livers in response to starvation stress at the transcriptomic and whole genome DNA methylation levels in yellowfin seabream.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Transcriptoma , Metilação de DNA , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...